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Abstract—We give the theoretical basis of a possible explanation for two
stylized facts observed in long log-return series: the long-range depen-
dence (LRD) in volatility and the integrated GARCH (IGARCH). Both
these effects can be explained theoretically if one assumes that the data are
nonstationary.

I. Introduction

THE long-range dependence (LRD) in volatility and the
integrated GARCH are common findings in the analysis

of long series of log returns, Xt � log Pt � log Pt�1, t �
0, 1, . . . , of stock indices, foreign exchange rates, bond
yields, and the like (where by Pt we denote the prices of
such instruments). More concretely, the sample autocorre-
lation functions (ACFs) of the absolute values and their
squares have the following three features: First, they are all
positive; second, they decay relatively fast at the first lags;
and third, they tend to stabilize around a positive value for
larger lags. We will refer to this behavior as the LRD effect
of absolute or squared log-return data. Concomitantly, the
periodograms for the absolute values of the log returns and
their squares blow up at frequencies near zero.

The integrated GARCH finding can be observed on fitting
a GARCH(1, 1) model (Bollerslev, 1986)

Xt � �tZt,
�t

2 � �0 � �1�t�1
2 � �1Xt�1

2 ,� t � �, (1)

to the data. Whereas for shorter samples the estimated
parameters �1 and �1 sum to values significantly different
from 1, for longer samples their sum becomes close to one.
[This motivated the introduction of the integrated
GARCH(1, 1) model—IGARCH(1, 1)—with �1 � �1 � 1
by Engle and Bollerslev (1986) as a possible generating
process for returns.] We refer to the ensemble of these two
phenomena as the IGARCH effect of return data. Figure 1
illustrates both the LRD and the IGARCH effects on the
daily log returns of the Standard & Poor’s 500 composite

stock index from January 2, 1953 through December 31,
1990.

The main contribution of the paper is to explain by
theoretical means how both mentioned effects could be due
to a plausible type of nonstationarity of the data: changes in
the unconditional variance. Some evidence for the presence
of this type of nonstationarity in the daily log returns is
brought forward in a companion paper (Mikosch & Stărică,
2002). There a goodness-of-fit test of the GARCH(1, 1)
model in the spectral domain is proposed and subsequently
used to perform a thorough analysis of the Standard &
Poor’s 500 composite stock index.

The connection between nonstationarities and LRD has a
long history in the applied probability literature [see Boes
and Salas (1978), Potter (1976), Bhattacharya, Gupta, and
Waymire (1983), Anderson and Turkman (1995), and
Teverovsky and Taqqu (1997) just to mention a few contri-
butions] and is present (to a much lesser extent) also in the
econometrics literature (Hidalgo & Robinson, 1996; Lobato
& Savin, 1998). Contemporaneously with and indepen-
dently of the present work, Granger and Hyung (1999) and
Diebold and Inoue (2001) investigate in an econometric
context the relationship between long memory and struc-
tural changes. Their studies focus on understanding this
relationship in the concrete cases of a few simple econo-
metric models with parameters that evolve in time. Our
paper provides a general theoretical argument that explains,
unhampered by particular model assumptions, how a very
plausible type of nonstationarities in economic data, that is,
changes in the unconditional mean or variance, can cause
the statistical tools (sample ACF, periodogram) to behave
the same way they would if used on stationary long-range
dependent sequences. [For a different interpretation of the
relationship between LRD and the notion of structural
change see Parke (1999).]

The possible causal relation between nonstationarities
and the integrated GARCH effect is a recurrent theme in the
financial econometric literature (Lamoureux and Lastrapes,
1990; Hamilton and Susmel, 1994; Cai, 1994) and can be
traced back to Diebold (1986). As a common feature, all the
references we are aware of make use of either simulations or
indirect approaches to substantiate their claims. In the sec-
ond half of the paper, we consider the Whittle estimation for
the GARCH model (see Giraitis and Robinson, 2001; Mi-
kosch and Straumann, 2002) and study the asymptotic
behavior of the parameter estimators under structural
breaks. We show theoretically that, at least in the frame of
the Whittle estimation, the IGARCH effect could be due to
the behavior of the estimators under misspecification. We do
not have a similar theoretical result for the more common
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Gaussian quasi-maximum-likelihood estimator. Based on
our results, both the LRD and the IGARCH effect could be
spurious.

Our paper is organized as follows. In section II we study
the behavior of some statistical tools under nonstationarity.
In section III we show that the same type of nonstationari-
ties can cause the IGARCH effect for the Whittle estimator
of the parameters of a GARCH process. In section IV we
substantiate by means of simulations the theoretically
proven impact of nonstationarities on estimation of the
long-memory parameter. We also illustrate, on the daily log
returns of the Standard & Poor’s 500 composite stock, the
buildup of the LRD in volatility effect during the oil
crisis of the 1970s. Some concluding remarks are given
in section V.

II. Long-Range Dependence Effects for
Nonstationary Sequences

Before investigating the LRD effect of return data, a few
remarks on the notion of long-range dependence are needed.
Various definitions of LRD exist in the literature; cf. Beran
(1994). In the most general setup, a second-order stationary
sequence (Yt) is said to exhibit LRD if the condition ¥h

��Y (h)� � � holds, where �Y � corr (Y0, Yh), h � �,
denotes the ACF of the Y-sequence. Most popular is the
definition of LRD via power law decay of the ACF: assume
there is a constant c� 	 0 such that

�Y
h� � c�h
2d�1 for large h and some d � 
0, 0.5�.

(2)

FIGURE 1

Top: Sample ACFs (left) and the periodogram (right) of the absolute log returns of the S&P 500. Here and in what follows, the horizontal lines in graphs displaying sample ACFs are set as the 95% confidence
bands (�1.96/n) corresponding to the ACF of iid Gaussian white noise. Bottom: Estimated values of � � �1 � �1 on a moving window with the length of a business year (250 observations) (left) and for an
increasing sample of S&P 500 log returns (right). In both graphs a GARCH(1, 1) model has been reestimated every 100 days (5 business months). For the graph on the right an initial GARCH(1, 1) model was
estimated on the first 500 observations. Then k � 100 data were successively added to the sample, and �1 and �1 were reestimated on these samples. On the right, we notice the almost monotonic increase of the
estimated �. The labels on the x axis indicate the date of the latest observation used for the estimation procedure. The estimation was done using the GARCH module of Splus.
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In this case, the condition ¥h ��Y (h)� � � is satisfied.
Alternatively, one can require that the spectral density fY (�)
of the sequence (Yt) be asymptotically of order L(�)��d for
some d 	 0 and a slowly varying function L, as � 3 0.
Under some subtle conditions, equation (2) can be shown to
be equivalent to the following: for some constant cf 	 0,

fY
�� � cf�
�2d as �2 0. (3)

The constant d � (0, 0.5) is called the long-memory
parameter.

In the econometrics literature, the study of LRD in
log-return series is conducted on samples providing many
years of data. When studying long time series, nonstation-
arities are quite likely. On the other hand, the statistical tools
we are using are meaningful only under certain assump-
tions, the most crucial one being the stationarity. Hence the
question arises what the statistical tools are telling us when
used on nonstationary data. In particular, it is well known
that various tools for detecting LRD are vulnerable to
structural breaks. For example, Bhattacharya et al. (1983)
proved that the celebrated R/S statistic indicates LRD when
the data contain a trend. Teverovsky and Taqqu (1997) gave
evidence that the sample variance of aggregated time series
when applied to short-memory data affected by trends or
shifts in the mean exhibit the same behavior as long-range
dependent stationary sequences.

In what follows, we consider the sample ACF and the
periodogram in situations when structural breaks occur. We
assume that the sample Y1, . . . , Yn consists of different
subsamples from distinct stationary models. To be precise,
let pj, j � 0, . . . , r, be positive numbers such that p1

� . . . � pr � 1 and p0 � 0. Define

qj � p0 � · · · � pj, j � 0, . . . , r.

The sample Y1, . . . , Yn is written as

Y 1

1�, . . . , Y �nq1�


1� , . . . , Y �nqr��1

r� , . . . , Y n


r�, (4)

where the i subsamples come from distinct stationary er-
godic models with finite second moment. The resulting
sample is then not stationary.

A. The Sample ACF under Nonstationarity

Define the sample autocovariances of the sequence (Yt)
as follows:

�̃n,Y
h��
1

n
�
t�1

n�h


Yt � Y� n�
Yt�h � Y� n�, h � �,

where Y� n denotes the sample mean. By the ergodic theorem
it follows for fixed h � 0 as n 3 � that

�̃n,Y
h�� �
j�1

r

pj

1

npj
�

t��nqj�1��1

�nqj�

Yt

 j�Yt�h


 j�

� � �
j�1

r

pj

1

npj
�

t��nqj�1��1

�nqj�

Yt

 j��2

� o
1� 3 �
j�1

r

pjE
Y 0

 j�Yh


 j��� � �
j�1

r

pjEY 
 j��2

� �
j�1

r

pj�Y
 j�
h�� �
1�i�j�r

pipj
EY 
 j� � EY 
i��2 a.s.

(5)

From equation (5) we can explain the LRD effect in
volatility. Suppose that X1, . . . , Xn is a log-return series
consisting of disjoint subsamples, each one being a short-
memory (more precisely, a strongly mixing with geometric
rate) white noise, with different variances. Then EXi � 0
for all i, and setting Y � X in equation (5) yields that the
sample ACF would still estimate 0 at all lags. This is in
agreement with real-life data. Setting Y � �X� or Y � X2 in
equation (5), the expectations of the subsequences (Y t

( j))
differ, and because the autocovariances �Y ( j)(h) decay to 0
exponentially as h 3 � (due to the short-memory assump-
tion), the sample ACF �̃n,Y (h) for sufficiently large h is
close to a strictly positive constant given by the second term
in equation (5). The overall picture should show a sample
ACF (�̃n,Y(h)) that decays exponentially for small lags and
approaches a positive constant for larger lags. The presence
of the positive constant in equation (5) forbids negative
correlations for larger lags. This is precisely the picture one
sees in the sample ACFs of both simulated and real-life
data; see also section IV.

This is precisely the case if one assumes for example, that
X1, . . . , Xn is a log-return series consisting of disjoint
subsamples which are modeled by distinct GARCH pro-
cesses. We know that, under mild conditions on the distri-
bution of the noise of a GARCH process, such as the
existence of a Lebesgue density, a stationary GARCH pro-
cess is strongly mixing with geometric rate; see Boussama
(1998). This in turn implies exponential decay of the ACF of
any function of the data; cf. Doukhan (1994). In particular,
this argument applies to the ACF of the absolute values and
squares of a GARCH process. Keeping this property in
mind, we expect for the samples �X1�, . . . , �Xn� and
X1

2, . . . , Xn
2 that their sample ACFs decay quickly for the

first lags and then they approach positive constants given by

�
1�i�j�r

pipj
E�X
 j�� � E�X
i���2 and

�
1�i�j�r

pipj
E
X

 j��2 � E
X
i��2�2, (6)
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respectively. This would explain the LRD effect we observe
in log-return series.

B. The Periodogram under Nonstationarity

Alternatively, one may consider estimates of the spectral
density. The classical estimator in this case is the perio-
dogram

In,Y
�� � � 1

�n
�
t�1

n

e�i�tYt� 2

, � � �0, ��,

which is evaluated at the Fourier frequencies

�j �
2�j

n
� 
��, ��. (7)

The periodogram is the natural (method of moments) esti-
mator of the spectral density of a second-order stationary
process; see Brockwell and Davis (1991, 1996).

It is our aim to show that the periodogram at the small
Fourier frequencies can become arbitrarily large if the
expectations EY( j) of the sequences (Y t

( j)) differ. For con-
venience we exclude the Fourier frequencies at 0 and �.
Since ¥t�1

n e�i�jt � 0, the periodogram at the Fourier
frequencies does not change its value if, for all t and any
constant c, one replaces Yt with the centered random vari-
able Yt � c. Therefore centering of Yt is not necessary. We
observe the following:

In,Y
�j� � � 1

�n
�
l�1

r �
t��nql�1��1

�nql�

Y t

l �e�i�jt� 2

� � 1

�n
�
l�1

r �
t��nql�1��1

�nql�


Y t

l � � EY 
l ��e�i�jt

�
1

�n
�
l�1

r

EY 
l � �
t��nql�1��1

�nql�

e�i�jt2.

Notice that

�
l�1

r

EY 
l �e�i�j
�nql�1��1� �
t�0

�nql���nql�1��1

e�i�jt

�
e�i�j

1 � e�i�j
�
l�1

r

EY 
l �
e�i�j�nql�1� � e � i�j�nql��

�
e � i�j

1 � e � i�j 	EY 
1� � EY 
r� � �
l�1

r�1


EY 
l �

� EY 
l�1��e�i�j�nql�


does not sum to zero if the expectations EY ( j) vary with j.
Assuming uncorrelatedness between different subsamples,
straightforward calculation yields for �j 3 0 that

EIn,Y
�j� � �
l�1

r

plE� 1

�npl

�
t�1

�nql���nql�1��1


Y t

l �

� EY 
l ��e�i�jt� 2

� � 1

�n
�
l�1

r

EY 
l � �
t��nql�1��1

�nql�

e�i�jt� 2

� �
l�1

r

pl�var 
Y 
l ��� 2 �
h�1

�npl��1 �1 �
h

�npl�
��Y
l �

� 
h� cos 
�jh�� �
1

n

1

�1 � e�i�j�2 �EY 
1� � EY 
r�

� �
l�1

r�1


EY 
l � � EY 
l�1��e�i�j�nql��2

� o
1�

� �
l�1

r

pl�2�fY
l �
�j���
1

n

1

�1 � e�i�j�2 �EY 
1� � EY 
r�

� 
1 � o
1�� �
l�1

r�1


EY 
l � � EY 
l�1��e�i2�jql�2

� o
1�

� �
l�1

r

pl�2�fY
l �
�j���
1

n�j
2 �EY 
1� � EY 
r�

� �
l�1

r�1


EY 
l � � EY 
l�1��e�i2�jql�2

� o
1�,

(8)

where fY (l ) denotes the spectral density of the sequence
(Y t

(l )).
Now assume that each of the subsequences (Y t

(l )) has a
continuous spectral density fY (l ) on [0, �]. Then the first
term in equation (8) is bounded for all frequencies �j, in
particular for small ones. If n�j

2 3 0 as n 3 �, the order
of magnitude of the second term in equation (8) is deter-
mined by (n�j

2)�1. For the sake of illustration, assume r �
2. Then equation (8) turns into

p1�2�fY 
1�
�j�� � p2�2�fY
2�
�j��

�
1

n�j
2 �EY 
1� � EY 
2��22
1 � cos 
2�jp1��.

(9)

Under the assumption EY (1) � EY (2), the right-hand prob-
ability for small n�j

2 is of order


n�j
2��1
1 � cos 
2�� jp1���, (10)
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where { x} denotes the fractional part of x. Now assume that
p1 is a rational number with representation p1 � r1/r2 for
relatively prime integers r1 and r2. Then { jp1} assumes
values 0, r2

�1, . . . , (r2 � 1)r2
�1. Thus, for j such that n�j

2

is small, the quantity (10) is either 0 or bounded away from
0, uniformly for all j. The effect on equation (9) is that this
quantity becomes arbitrarily large for various small values
of j as n 3 � and is bounded from below by the weighted
sum of the spectral densities

p1�2�fY
1�
�j�� � p2�2�fY
2�
�j��.

Assume now that a log-return series X1, . . . , Xn is
modeled by disjoint subsamples from distinct GARCH
models. Because EXi � 0, we see that the second term in
equation (8) disappears. Moreover, since a GARCH process
is white noise, its spectral density is a constant. According
to equation (8), we expect the periodogram estimates to be
flat, that is, approximate a constant. This is in agreement
with periodogram estimates on log-return data. The situa-
tion changes when one considers the periodogram of the
absolute values �X1�, . . . , �Xn� and the squares X1

2, . . . , Xn
2.

Because the ACFs of both series decay exponentially fast,
the spectral densities f �X(i)� and f(X(i))2 corresponding to the ith

GARCH model are continuous functions on [0, �]. Thus the
apparent explosion of the spectral estimate for absolute and
squared returns at small frequencies could be due to the
second term in equation (8), which is nonnegligible because
the expectations E�Xt

(i)� and E(Xt
(i))2 differ in the different

subsamples.
Let us conclude the section by summarizing our findings.

Our theoretical explanations show how shifts in the variance
of the data could explain the LRD effect both in the sample
ACF and in the spectral estimates we observe in real-life log
returns. Moreover, we found theoretically that the stronger
the nonstationarity [that is, the bigger the differences
(E�X(1)� � E�X(2)�)2 and (E(X(1))2 � E(X(2))2)2 in the case
when r � 2], the more pronounced the LRD effect [equa-
tions (6) and (9)]. See section IV for a simulation study on
the impact the change of variance has on the estimation of
d, the parameter of long memory, and for some empirical
evidence on the buildup of the LRD effect in the daily log
returns of the Standard & Poor’s 500 composite stock.

III. The Effect of Nonstationarities on the Whittle
Parameter Estimation of GARCH(1, 1) Models

The model estimation procedures for a GARCH(1, 1)
process (1) could also be affected by nonstationarity of the
data. In this section we will show by theoretical means that,
at least in the framework of Whittle estimation, the
IGARCH effect explained in section I appears when the
sample displays nonstationarities of the type of changing
unconditional variance. More concretely, we focus on the
properties of the Whittle estimator for the parameters �1 and
�1 of the model (1) when the sample consists of subsamples
from distinct GARCH(1, 1) models.

Our main motivation for the choice of the Whittle esti-
mator is that we can give a theoretical result for the
asymptotic behavior of the parameter estimator under non-
stationarity. Although the estimation procedure most often
used in applications is Gaussian quasi maximum likelihood
[see Berkes, Horváth, and Kokoszka (2003) for some recent
results including the consistency and asymptotic normality
in a general GARCH( p, q) model], we cannot provide a
similar result for this method.

The Whittle estimator is a well-known classical pseudo-
likelihood estimator for ARMA processes. It is asymptoti-
cally equivalent to the Gaussian maximum likelihood and
least squares estimators, and yields consistent and asymp-
totically normal (with raten) estimators. Moreover, in the
case of an autoregressive process it coincides with the
Yule-Walker estimator. We refer to Brockwell and Davis
(1991, section 10.8) for an encyclopedic treatment of the
Whittle and related estimators.

The asymptotic behavior of the Whittle estimator for
GARCH processes was studied in Giraitis and Robinson
(2001) under an eighth-moment assumption, and in the
remaining cases in Mikosch and Straumann (2002). The
convergence rates in the former case are comparable to
those of the Gaussian quasi maximum likelihood estimator,
but the asymptotic covariances are not comparable, and
therefore there is no obvious theoretical reason why one
should prefer Gaussian quasi maximum likelihood. The
discussion by Mikosch and Straumann (2002) (see the
simulation results in section IV), which is also supported by
simulations, shows that both estimators are poor for small
and medium sample sizes (up to 1000, say) but that the
Gaussian quasi maximum likelihood estimator is superior
for large sample sizes and also in the case when the eighth
moment of the data does not exist.

If one assumes that the whole sample X1, . . . , Xn comes
from a GARCH(1, 1) model with parameters �1 and �1, it
follows (see appendix B) that (Ut) � (Xt

2 � EXt
2) can be

written as an ARMA(1, 1) process

Ut � �1Ut�1 � �t � �1�t�1, t � �, (11)

with white-noise innovations sequence (�t) � (Xt
2 � �t

2),
provided EXt

4 � �, and where

�1 � �1 � �1 and �� 
�1, �1�.

The Whittle estimate �n � (�� 1, �� 1) of the ARMA(1, 1)
model (11) is obtained by minimizing the Whittle function

�� n
2
���

1

n
�
j

In,U
�j�

g
�j, ��
(12)

with respect to � from the parameter domain

� � �
�1, �1� : �1 � �1, �1 � 1�,
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where

f
�, �� �
��

2

2�
g
�, �� �

��
2

2�

�1 � �1e
�i��2

�1 � �1e
�i��2 and

��
2 � var 
�1

2�.
(13)

Clearly, both �1 and �1 are nonnegative. But for theoretical
reasons we need � to be open, whereas for practical reasons
we do not want to exclude �1 � 0 or �1 � 0. The sum ¥j

in equation (12) is taken over all Fourier frequencies �j �
(��, �)�{0}, and f(�, �) denotes the spectral density of
the ARMA(1, 1) process (Ut); see for example Brockwell
and Davis (1991, chapter 4).

Given EX1
4 � �, the Whittle estimates of the parameters

of a causal invertible stationary ergodic ARMA( p, q)
process (Ut) with white-noise innovation sequence (�t) are
strongly consistent. This follows along the lines of the proof
of Theorem 10.8.1 in Brockwell and Davis (1991). Therein,
strong consistency is proved for an ARMA( p, q) process
with an i.i.d. white-noise innovation sequence. However, a
close inspection of pp. 378–385 in Brockwell and Davis
(1991) shows that for the consistency of the Whittle esti-
mates only the strict stationarity and ergodicity of the
ARMA( p, q) process are required, and they follow from
the corresponding properties of (Xt) (see Bougerol &
Picard, 1992).

Now we provide a possible explanation for the
IGARCH effect. We show that this could be an artifact
due to nonstationarity in the data. We assume that the
sample X1, . . . , Xn consists of r subsamples from differ-
ent GARCH(1, 1) models [as described in equation (8)]
with corresponding parameters �(i) � (�1

(i), �1
(i)), i �

1, . . . , r.
If (Xt

2) constitutes a stationary sequence, centering is not
necessary in the definition of the Whittle likelihood �� n

2(�),
for ¥t�1

n e�i�jt � 0 for �j � 0. Thus, for the Fourier
frequencies �j � 0 we have In,X2(�j) � In,U(�j), and
therefore it is assumed without loss of generality in Brock-
well and Davis (1991) that the sample is mean-corrected.
Hence the Whittle likelihood function �� n

2(�) can also be
rewritten as

�� n
2
���

1

n
�
j

In,X2
�j�

g
�j, ��
�

1

n
�
j

In,X2�Xn
2�
�j�

g
�j, ��
,

where Xn
2 � n�1 ¥t�1

n Xt
2.

We start with an analog of Proposition 10.8.2 in Brock-
well and Davis (1991).

Proposition 3.1. Let X1, . . . , Xn be a sample consisting
of r subsamples as described in equation (4). Assume that
the ith subsample comes from a GARCH(1, 1) model with

parameter �(i) � (�1
(i), �1

(i)) in � and that E(X(i))4 � �.
Then for every � � � the following relation holds:

�� n
2
��O¡

a.s.

�
�� :�
1

2� �
��

� ¥i�1
r pi��
i�

2 g
�, �
i��

g
�, ��
d�

�
¥1�i�j�r pipj
�X
i�

2 � �X
 j�
2 �2

g
0, ��
,

(14)

where �A
2 � var ( A). Moreover, for every � 	 0, defining
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uniformly in � � �, the closure of �, almost surely.
The proof of the proposition is given in appendix A.
The dependence structure between the different

subsamples is inessential for the validity of the proposi-
tion.

Next we formulate a result in the spirit of theorem 10.8.1
of Brockwell and Davis (1991).

Theorem 3.2. Assume the conditions of Proposition 3.1
are satisfied. Let �n be the minimizer of �� n

2(�) for � � �.

Then �nO¡
a.s.

�0, where �0 is the minimizer of the function
�(�) for � � � defined in equation (14).

The proof of the theorem is given in appendix A. It also

follows from Proposition 3.1 that �� n
2(�n) O¡

a.s.

�(�0).
We now specify the above results for the case of two

subsamples, that is, p1 � p2 � 1. We exploit the following
argument. The spectral density of the ARMA(1, 1) process
(Ut) is of the form [see equation (13)]

��
2

2�

�1 � �1e
�i��2

�1 � �1e
�i��2 �

1

2�
�

h���

�

�X2
h�e�i�h,

� � ���, ��.

From appendix B we know the explicit form of the ACF of
an ARMA(1, 1) process. Denote by (X̃t) an ARMA(1, 1)
process with i.i.d. standard Gaussian innovations, AR pa-
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rameter �1, and MA parameter �1. Direct calculation shows
that
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By using the particular form of �X̃(i) we obtain for �(�),
the function to be minimized, the following:
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� �1)��1 �

�1 � �1��1

1 � �1
2 �.

It is not possible to obtain an explicit form of the minimizer
of �(�) over �. However, minimizing it numerically gives
a clear image of what goes on. As an example, we choose to
investigate the behavior of the minimum of �(�) when the
sample consists of two subsamples of equal size, that is,
p1 � p2 � 0.5.

The choice of the GARCH(1, 1) parameters of one
subsample is motivated by the data analysis in the com-
panion paper Mikosch and Stărică (2002); see also sec-
tion IV. There a Student-t GARCH(1, 1) model was
estimated on the first 4 years of the daily S&P 500
log-returns sample covering the period from January 2,
1953, through December 31, 1990, producing the follow-
ing coefficients:

�0 � 8.58 � 10�6, �1 � 0.072,

�1 � 0.759, � � 5.24,
(17)

FIGURE 2

Left: The minimizing �1-value of the function �(�) when p1 � p2. The parameters �0
(1), �1

(1), and �1
(1) are fixed according to equation (17). The parameters of the second GARCH(1, 1) model �1

(2) and �1
(2) vary,

whereas the fourth moment of the noise (Zt) and the parameter �0
(2) are the same. Right: The absolute difference between the standard deviations of the two models generating the subsamples.
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where � is the number of degrees of freedom of the noise
sequence (Zt) (the corresponding value of the fourth mo-
ment of the estimated residuals is EZ4 � 7.82). The second
subsample is a realization of a GARCH(1, 1) model with the
same �0 and � as in equation (17). The other two parame-
ters, �1 and �1, of the second model were chosen to vary
around the values 0.072 and 0.759, respectively. The results
are presented in figure 2, illustrating the IGARCH effect.
The two graphs establish a close connection between the
size of the absolute differences in the variances of the two
subsamples and �1’s proximity to 1: the larger the absolute
difference in variance, the closer to 1 the value of �1 that
minimizes the function �(�). This theoretical value is the
limit of the Whittle estimate �n.

The behavior observed in figure 2 can, at least to some
extent, explain the behavior of the estimates for �1 and �1 of
real-life log-return data; see section IV for related empirical
evidence.

IV. Simulation Studies and Data Analyses

A. The Effect of Nonstationarities on the Geweke–Porter-
Hudak Estimator

The theory in section III establishes a close connection
between the explosion of the periodogram of nonstationary
sequences around the origin and the difference between the
variances of the subsamples. We further illustrate the con-
sequences of nonstationarity for the estimation of the long-
memory parameter d, defined in equations (2) and (3). An
estimated value significantly larger than 0 is often taken as
evidence for the presence of LRD in the data; see for
example Beran (1994) for details on the statistical estima-
tion of d. The closer the estimated d to 0.5, the further the
dependence is thought to range.

An estimation procedure for d is suggested by the fol-
lowing argument. Assuming that equation (3) holds for

FIGURE 3.—ESTIMATED LONG-MEMORY PARAMETER d FOR VARIOUS VALUES OF m

The simulated samples have length n � 2048. The first 1,024 observations come from the GARCH(1, 1) model with parameters (17). The other 1,024 observations come from GARCH(1, 1) processes with
parameters �0 and � fixed at the values in equation (17), that is, 8.58 � 10�6 and 5.24 respectively. Top: m � n0.4 (left) and m � n0.5 (right). Bottom left: m � n0.6. Bottom right: The log of the absolute values
of the differences between the variances of the first and second parts of the sample.
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(�Xt�), d can be estimated via linear regression from a
log-log plot of the periodogram versus the frequency �, for
small �:

log In,�X�
��� log cf � 2d log �.

This procedure yields the ubiquitous Geweke–Porter-Hudak
(GHP) estimator introduced in Geweke and Porter-Hudak
(1983) and defined as

d̂ :� �
1

2Sxx
�
j�1

m

ajIn,�X�
�j� (18)

where aj � Uj � U� , Uj � log �2 sin (�j/ 2)�, U� � m�1

¥j�1
m Uj, and Sxx � ¥j�1

m aj
2. The �j are the Fourier

frequencies defined in equation (7), and m is the number of
lower frequencies used in estimation. The choice of m is a
delicate matter, because a too small m causes the estimator
to have a high variance, whereas a too large m induces a
high bias. Values of m of order from n0.3 to n0.8 are common
in the literature.

In a simulation study the long-memory parameter d is
estimated on the absolute values of samples affected by
nonstationarity of the unconditional variance. The simulated
samples have length n � 2048. In the first set of simula-
tions, with results presented in figure 3, the first 1024
observations of every sample come from a GARCH(1, 1)
model with Student-t innovations and parameters (17). The
other 1024 observations were simulated using GARCH(1,
1) processes with parameters �0 and � fixed at the values in

FIGURE 4.—ESTIMATED LONG-MEMORY PARAMETER d FOR VARIOUS VALUES OF m

The simulated samples have length n � 2048. The first 1024 observations come from the GARCH(1, 1) model with parameters (17). The other 1024 observations are simulated using GARCH(1, 1) processes
with parameters �1 and �1 which are kept constant at the values in equation (17), 0.072 and 0.759 respectively. Top: m � n0.5 and m � n0.6. Bottom left: m � n0.7. Bottom right: The logs of the absolute values
of the differences between the variances of the models producing the second half of the sample and that of the model with parameters (17).
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equation (17), 8.58 � 10�6 and 5.24 respectively, but
varying �1 and �1 in the regions �1 � (0.06, 0.09) and �1 �
(0.52, 0.9). In the second set of simulations, with results
presented in figure 4, the second half of the sample was
simulated using GARCH(1, 1) processes with parameters �1

and �1 fixed at the values in equation (17), 0.072 and 0.759
respectively, while the parameters �0 and �, the parameter
of the Student-t distribution, varied between 0.15 � 10�5

and 4 � 10�5 and between 4 and 16, respectively. The
experiments were repeated 500 times; the estimated value d
in the top and bottom left graphs in figures 3 and 4
represents the average of the 500 estimates.

The calculations in section IIB predict an explosion of the
periodogram in a neighborhood of the origin for sequences
affected by changes of variance. We found theoretically that
the stronger the nonstationarity [that is, the bigger the
differences (E�X(1)� � E�X(2)�)2 and (E(X(1))2 � E(X(2))2)2

in the case when r � 2], the more pronounced the LRD
effect (6) and (9). This connection can be clearly seen in the
results of our simulations. The graphs in figures 3 and 4
show that time series with changing unconditional variance
produce estimates of the long-memory parameter d that
could erroneously be interpreted under the assumption of
stationarity as evidence of long memory.

B. The Whittle Estimator for GARCH(1, 1) Models

Since the emphasis in the literature on estimation of
GARCH models is on the Gaussian quasi MLE, other
estimation techniques (as for example the Whittle estima-
tion) have often been ignored. We are aware only of two
references on this subject: Giraitis and Robinson (2001) and
Mikosch and Straumann (2002). In this section we present
the results of two simulation studies designed to shed some

light on the comparative behavior of the two methods of
estimation.

Figure 5 indicates that for small sample sizes such as the
length of a business year (250 observations), the two esti-
mators perform equally badly for parameter values that
ensure the existence of the fourth moment. For larger
sample sizes the Whittle estimator is inferior to the MLE, as
figure 6 clearly shows. We conclude by noting that in the
context of efficiency it is almost impossible to make any
theoretical statement concerning the two estimators. More
concretely, it is difficult to directly compare the asymptotic
covariance matrices of the Whittle estimator (which depend
only on the variances of the �t’s and the parameters) with
those of the quasi-MLE (which depend on the distribution
of the noise Zt and the parameters, are rather unattractive,
and need to be evaluated through simulations).

C. LRD in the Standard & Poor’s 500 Index

We conclude this section with an illustration of the
buildup of the LRD effect based on a real data set. In a
companion paper (Mikosch & Stărică, 2002), our analysis
of the Standard & Poor’s 500 composite stock index from
January 2, 1953, through December 31, 1990 identified
most of the recessions of the period as being structurally
different. More concretely, we found that most of the reces-
sions coincide with an increase in the unconditional vari-
ance of the time series. We identified the period beginning
in 1973 and lasting for almost 4 years as the longest and
most significant deviation from the assumption of constant
unconditional variance. This period is centered around the
longest economic recession in the analyzed data. Figure 7
shows the impact which this structurally different period has
on the sample ACF of the time series.

FIGURE 5.—A COMPARISON OF THE GAUSSIAN QUASI MLE AND THE WHITTLE ESTIMATOR FOR A GARCH(1, 1) PROCESS WITH PARAMETERS

�0 � 8.58 � 10�6, �1 � 0.072, �1 � 0.92, �1 � �1 � �1 � 0.992 AND NORMAL INNOVATIONS

The sample size is n � 250.
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It displays the sample ACF of the absolute values �Xt� up
to the moment when the change is detected (at the beginning
of 1973), next to the sample ACF including the 4-year
period that followed. The impact of the change in the
structure of the time series between 1973 and 1977 on the
sample ACF is extremely severe, as one sees from the right
graph of figure 7. This graph clearly displays the LRD effect
as explained in section IIA: exponential decay at small lags
followed by an almost constant plateau for larger lags,
together with strictly positive correlations. Contrary to the
belief that the LRD characteristic carries meaningful infor-
mation about the price-generating process, these graphs
suggest that the LRD behavior could be just an artifact due
to very plausible structural changes in the log-return data:
variations of the unconditional variance due to the business
cycle.

V. Concluding Remarks

In this paper we have argued that:

● The LRD effect in log-return series might be due to
nonstationarity. It could be spurious, because the statisti-
cal tools used to detect it cannot discriminate between
stationary long-memory and nonstationary time series.

● Modeling the changes in the conditional variance
while assuming stationarity, that is, constant uncondi-
tional variance (via GARCH-type models, for exam-
ple) leads possibly to spurious findings by integrated
models (IGARCH).

As for the question whether there is LRD in the absolute
log returns or not, we believe that, because one cannot

FIGURE 6.—A COMPARISON OF THE GAUSSIAN QUASI MLE AND THE WHITTLE ESTIMATORS OF �1 � 0.92 IN THE GARCH(1, 1) PROCESS OF FIGURE 5

Gaussian quasi MLE outperforms the Whittle estimator for larger sample sizes. However, one needs samples of size about n � 5,000 before the asymptotic normality results start working for the quasi MLE.
Both estimators are negatively biased.

FIGURE 7.—THE SAMPLE ACF FOR THE ABSOLUTE LOG RETURNS OF THE FIRST 20 AND 24 YEARS (LEFT AND RIGHT) OF THE S&P DATA
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decide about the stationarity of a stochastic process on the
basis of a finite sample, that question will certainly keep the
academic community busy in the future.

REFERENCES

Anderson, C. W., and Turkman, K. F., “Sums and Maxima of Stationary
Sequences with Heavy Tailed Distributions,” Sankhyā 57 (1995),
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APPENDIX A

Proof of Proposition 3.1: For simplicity of presentation we restrict
ourselves to the case of two subsamples. The general case is analogous.
We follow the lines of proof of proposition 10.8.2 in Brockwell and Davis
(1991) specified to the ARMA(1, 1) process (Xt

2). Since each of the
subsamples comes from a strictly stationary and ergodic model, the
((Xt

(i))2) constitute stationary and ergodic sequences with E(X(i))4 � �,
i � 1, 2. As in Brockwell and Davis (1991), we restrict ourselves to show
that equation (15) is satisfied. The same arguments as on pp. 378–379 in
Brockwell and Davis (1991) apply. The only fact one then has to check is
the a.s. convergence of the sample autocovariances

�̃n,X2
h��
1

n �
t�1

n�h


Xt
2 � Xn

2�
Xt�h
2 � Xn

2�.

The same arguments as for equation (5) show that

�̃n,X2
h�O¡
a.s.

�X2
h� :� p1�
X
1��2
h�� p2�
X
2��2
h�� p1p2
�X
1�
2 � �X
2�

2 �2.

Similarly to Brockwell and Davis (1991, p. 378), introduce the Cèsaro
mean of the first m Fourier approximations to 1/g�(�, �), given for every
m � 1 by

qm
�, �� � �
�k��m

�1 �
�k�
m �bke

�ik�,

where

bk �
1

2� �
��

�

eik�
1

g�
�, ��
d�.

Then the same arguments as for (10.8.11) in Brockwell and Davis (1991)
and the display following it show that for every m � 1,
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j
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2�
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g�
0, �� � � const �

for every � 	 0, uniformly in�� �. The same arguments as in Brockwell
and Davis (1991) conclude the proof.

Proof of Theorem 3.2: One can follow the arguments on p. 385 of
Brockwell and Davis (1991). We again assume for ease of presentation
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that r � 2. Assume that �nO¡
a.s.

�0 does not hold. Then by compactness

there exists a subsequence (depending on  � !) such that �nk
3 �,

where � � � and � � �0. By proposition 3.1, for any rational � 	 0,
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So by letting � 3 0 we have

lim inf
k3�

�̂nk

2 
�nk�� �
��	 �
�0�. (A-1)

On the other hand, by definition of �n as a minimizer, equation (14)
implies that

lim sup
n3�

�̂n
2
�n�� lim sup

n3�
�̂n

2
�0�� �
�0�.

This is a contradiction to equation (A-1). This concludes the proof.

APPENDIX B

Consider a GARCH(1, 1) process (Xt) with parameters �0, �1, �1. We
write �1 � �1 � �1 and assume EX4 � �. From the calculations below
it follows that the condition

1 � 
�1
2EZ4 � �1

2 � 2�1�1� 	 0

must be satisfied. The squared GARCH(1, 1) process can be rewritten as
an ARMA(1, 1) process by using the defining equation (1):

Xt
2 � �1Xt�1

2 � �0 � �t � �1�t�1,

where (�t) � (Xt
2 � � t

2) is a white-noise sequence. Thus, the covariance
structure of

Ut � Xt
2 � EX2, t � �,

is that of a mean-zero ARMA(1, 1) process. The values of �U(h) are given
on p. 87 in Brockwell and Davis (1991):
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2	1 �


�1 � �1�
2
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2 
 ,

�U
1� � ��
2	�1 � �1 �


�1 � �1�
2�1

1 � �1
2 
 ,

�U
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h�1�U
1�, h � 2.

Straightforward calculation yields
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EZ 4 � 1�E�1

4 �
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1 � �1

�0
2
EZ 4 � 1�

1 � 
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2
EZ 4 � 1��
,

�X
2 �

�0

1 � �1
.

(B-1)

Thus we can calculate the quantities

vX
h� � E
X0
2Xh

2� � �U
h� � �X
4 , h � 1,

which occur in the definition of the changepoint statistics and goodness-
of-fit test statistics of section III. We obtain

vX
h� � �X
4� 
EZ 4 � 1��1
1 � �1

2 � �1�1�

1 � 
�1
2 � �1

2
EZ4 � 1��
�1

h�1 � 1� , h � 1.

(B-2)
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